Арифметическая прогрессия
Ошибка.
Попробуйте повторить позже
Первый член арифметической прогрессии меньше 0, сотый не меньше 74, а двухсотый меньше 200. Количество членов прогрессии на
интервале ровно на два меньше, чем на отрезке
. Найдите первый член и разность прогрессии.
Пусть первый член арифметической прогрессии, а
—- ее разность. Тогда ее
-й член равен
, а
-й равен
Из условия получаем, что
Если рассмотреть разность второго и первого уравнения, а также третьего и второго, то получим:
То есть . Отсюда, в частности, следует, что последовательность возрастает.
Пусть - наибольший член арифметической прогрессии, который находится левее интервала
, т. е.
. А
-
наименьший элемент арифметической прогрессии, который находится правее интервала
(то есть
- наименьший член,
удовлетворяющий условию
).
Схожим образом определим - наименьший член арифметической прогрессии, который находится внутри интервала
, а
-
наибольший элемент арифметической прогрессии, внутри
Так как на отрезке ровно на
члена прогрессии больше, чем на
, то количество членов прогрессии между
и
в точности равно количеству элементов между
и
. Тогда
для некоторого натурального
.
При этом , а
. (потому что отрезок
покрывает интервал
, а
покрывает
). Но тогда
, а также
Из двух условий:
Получаем , то есть
. Откуда
При этом мы знаем, что в прогрессии есть члены и
. Тогда
для некоторого целого
. Подставляя
найденные выше значения для
, мы получим целое значение
только в случае
.
Далее перейдем к поиску . Из условия на сотый член прогрессии
следует, что
. А также мы знаем, что
.
Будем теперь двигаться на влево от
, из нашей прогрессии, пока не попадем в интервал
. Тогда получаем, что
в этом интервале находится только член прогрессии, равный
, тогда
.
Непосредственной подстановкой значений можно убедиться, что удовлетворяют условиям задачи.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!