Тема Системы уравнений и неравенств

Оценки в системах

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела системы уравнений и неравенств
Решаем задачи

Ошибка.
Попробуйте повторить позже

Задача 1#104695

Решите систему уравнений

(|   1-  1-  4-
|||{   x2 + y2 + z2 = 9
|   x2+ 9y2 +z2 = 4
|||( √ -      √-
 2  3x − 6y+ 3z = 2
Показать ответ и решение

Первое решение.

Заметим, что в левых частях первых двух уравнений — суммы квадратов. Так можно записать квадраты длин векторов

   ( 1 1 2)
a=   x,y,z  и b =(x,3y,z).

Согласно условию, |a|= 3,|b|=2  . Заметим, что скалярное произведение векторов a  и b  равно

(a,b)= 1⋅x+ 1 ⋅3y + 1 ⋅z = 6
      x    y     z

что совпадает с |a|⋅|b| , а значит, вектора коллинеарны, причём a= 3b
   2  . Поэтому

(|| 1 = 3⋅x        (|| x =± √√2
{ x1 = 29⋅y   ⇐⇒   { y =± √32
||( y2 = 23⋅z        ||( z = ± 32√
  z   2                  3

Подставим эти значения в третье уравнение (выбор знака перед каждым слагаемым независим):

  √-   √-
±2 2 ∓2 2 ±3= 3

Равенство возможно только в двух случаях: ( √- √-   )
  √23,32, 2√3 или ( √-   √-   )
 −√23,− -23 ,√23 .

_________________________________________________________________________________________________________________________________________________________________________________

Второе решение. Умножим на 4 и 9 первое и второе равенство в системе соответственно и сложим их:

(       )  (       )   (      )
 9x2+ 4- +  81y2 +-4  +  9z2+ 16  = 72
      x2         y2         z2

По неравенству о средних получаем, что

(|   2  -4
|||||  9x + x2 ≥12
|{    2  4-
|||  81y + y2 ≥ 36
||||(   2  16
   9z + z2 ≥ 24

Тогда

(  2  4 )  (   2  4)   ( 2  16)
 9x + x2 +  81y + y2- +  9z +z2  ≥ 72

Следовательно, равенство достигается тогда и только тогда, когда в каждом из неравенств выполняется равенство, то есть

(|| (     2)2
|||||   3x − x  = 0
||{ (     2)2
||   9y − y  = 0
||||| (      )2
||(   3z − 4  = 0
        z

Откуда получаем

        -
(||      √6-
||||| x =± 3
|{      √2-
||| y =± 3
|||||      2√3
( z =±  3

Подставим полученные значения в третье уравнение:

  √-   √-
±2 2 ∓2 2 ±2= 2

Чтобы избавиться от иррациональности слева необходимо чтобы x  и y  были одного знака, а равенство превращается в тождество при    2√3-
z =--3 .  Таким образом, получаем 2 решения: ( √6 √2  2√3-)
  -3 ;-3-;-3 и (  √6   √2 2√3)
  −-3-;− -3 ;-3

Ответ:

(√6 √2- 2√3) (  √6   √2 2√3)
 -3 ;-3-;-3 , − -3 ;− 3-;-3

Ошибка.
Попробуйте повторить позже

Задача 2#80763

Решите систему уравнений

{  √x+-3− √4−-x−-z+5 =2∘y-+-x−-x2-+z;
   |y+ 1|+ 3|y − 12|=√169-− z2.

Источники: Физтех 2024, 4.2 (olymp-online.mipt.ru)

Показать ответ и решение

Рассмотрим второе уравнение системы. Правая часть не больше 13, так как

∘------2  √---
 169− z ≤  169=13

Попробуем оценить левую часть второго уравнения. Рассмотрим |y+ 1|+ |y − 12|,  которое не меньше 13,  так как |a|+|b|≥ a+ b,  где a =y+ 1, b= 12− y.  В итоге имеем

|y+ 1|+|y− 12|≥ 13

Прибавим к последнему неравенству 2|y− 12|,  тогда получим

|y+1|+ 3|y− 12|≥ 13+ 2|y− 12|

Из последнего выражения делаем вывод, что левая часть второго уравнения системы не меньше 13.  В итоге, получили, что левая часть не меньше 13,  а правая часть не больше 13.  Следовательно, чтобы достигалось равенство необходимо, чтобы y = 12, z = 0.  Подставим полученные значения y  и z  в первое уравнения системы для нахождения x.

√x+-3− √4−-x−-0+ 5= 2∘12-+-x−-x2+0

                    ----------
√x-+-3− √4-−-x+5 − 2∘ (x +3)(4− x)= 0

Сделаем замену

{    √ ----
  a =√-x+-3, a≥ 0,
  b=  4 − x, b ≥0

Заметим, что  2  2
a + b =7.  Запишем систему

{
  a−2 b+25− 2ab= 0
  a + b =7

(|     b−-5-
||{  a= 1− 2b
||  (     )2
|(   1b−− 52b + b2 =74x4− 4x3− 26x2+18x+ 18

  4   3    2
4b-− 4b-−-26b-+2-18b-+18= 0
       (1 − 2b)

Рассмотрим, когда числитель становится равным 0

4b4− 4b3− 26b2+18b+ 18 =0 ⇐ ⇒  2(b2+b− 3)(2b2− 4b− 3)=0

Из последнего уравнения получаем совокупность решений

         √--
⌊ b= −1±--13-
||       2
|⌈    2± √10
  b= --2---

С учетом ограничений получаем следующие b

⌊        √--
  b= −1+--13-
|||       2
⌈    2+-√10
  b=   2

Тогда сделаем обратную замену

⌊         √--
  √4-− x-=-13−-1
|||           2
⌈ √ ----  2+√10-
    4− x =  2

⌊          √--     √--
| x= 4− 7−2-13= 1+-213
||⌈           √--      √--
  x= 4− 7+-2-10= 1−-2-10
           2        2
Ответ:

(1+ √13    )  (1− 2√10    )
 ---2--;12;0 ,  ---2---;12;0

Ошибка.
Попробуйте повторить позже

Задача 3#63741

Решите систему уравнений

{ x10+ x10+ ...+ x10=310
  x133+ x233+ ...+ x9323=333
   1    2       92

Источники: ОММО-2023, номер 5 (см. olympiads.mccme.ru)

Показать ответ и решение

Заметим, что

( x1)10  (x2)10     ( x92)10
  3   +   3   +...+  3    = 1

Тогда для каждого 1≤k ≤92  имеем |xk|
|3-|≤1,  откуда

|x |33  |x |10
||k3||  ≤ ||k3||

Окончательно получим

   |(   )   (  )        (  )  |
1= ||| x1 33+  x2 33+ ...+  x92-33|||≤
     3       3          3

≤ |||x1|||33+ |||x2|||33+ ...+|||x92|||33 ≤
   3      3          3

  |  |   | |       |   |
≤ ||x1||10+ ||x2||10+ ...+||x92||10 =
   3      3          3

= (x1)10+ (x2)10+ ...+ (x92)10 =1.
    3      3           3

Значит, для каждого k  выполнено

||xk||33  ||xk||10
|3|  = |3|

откуда

xk ∈ {−3,0,3}

Отсюда несложно получаем, что тогда один из x
 k  равен 3,  а все остальные равны 0.

Ответ: одна из переменных равна 3, все остальные равны 0

Ошибка.
Попробуйте повторить позже

Задача 4#31281

Найдите действительные решения системы уравнений

{ x2− 4x +4y+ 27= 0;
  y2+ 2x +8y+ 10= 0.
Показать ответ и решение

Сложим уравнения:

 2         2                    2      2
x − 2x+ 1+y + 12y+36= 0⇐ ⇒ (x − 1) + (y+ 6) =0 ⇐⇒ x= 1,y = −6

Осталось проверить решения, подставив их в первое уравнение, откуда получаем ответ.

Ответ:

 (1,− 6)

Ошибка.
Попробуйте повторить позже

Задача 5#34755

Найдите все действительные решения системы уравнений

{ x2+ 7x− y+ 11 =0;
  y2+ 3x− y+ 15 =0.
Показать ответ и решение

Сложим уравнения:

 2       2                 (2        )  ( 2      )
x +10x+ y − 2y +26= 0 ⇐⇒    x +10x+ 25+  y − 2y+ 1 = 0 ⇐⇒

          2      2
⇐⇒   (x +5) +(y− 1)= 0

Сумма квадратов двух чисел равна нулю тогда и только тогда, когда каждое из чисел равно нулю. Поэтому из последнего равенства x =− 5  и y =1  . Мы нашли решение следствия системы, но не факт, что оно является решением исходной системы. Но после подстановки найденных значений x  и y  убеждаемся, что они подходит, и пишем ответ.

Ответ:

 (−5;1)

Ошибка.
Попробуйте повторить позже

Задача 6#34756

Решите систему:

{ x2+ y2+ 2(x− y)+2 =0;
  z2+ xz+ yz− 4 =0.
Показать ответ и решение

Выделим квадраты в первом уравнении

     2       2
(x+1) + (y− 1) =0  ⇐ ⇒  x =− 1,y =1

Подставляя во второе уравнение, получаем z2− 4= 0  ⇐⇒   z = ±2  , откуда и получаем ответ

Ответ:

 (−1;1;2),(−1;1;− 2)

Ошибка.
Попробуйте повторить позже

Задача 7#45002

Решите систему уравнений

{ 4x2− 4x4+y =ey,
  2arcsinx+ arccosy =0.
Показать ответ и решение

Система определена при x,y ∈ [−1;1].

При замене    2
t=x  первое уравнение системы равносильно

     2   y
4t− 4t= e − y

Вычитая единичку из обеих частей, получаем

       2  y
−(2t− 1) = e − y− 1

Левая часть неположительна. Докажем, что правая часть неотрицательна, то есть

f(y)= ey− y− 1 ≥0

По знакам производной f′(y)= ey − 1  понимаем, что функция f(y)  принимает наименьшее значение при y = 0  , так что f(y)≥f(0)= 0.

Получили

0≥ −(2t− 1)2 =ey− y− 1≥ 0,

так что должно достигаться равенство, откуда 2t= 1  ⇐⇒   |x|= 1√2  и y = 0  . При этом условии выполняется первое уравнение системы.

Подстановкой во второе уравнение системы при x= √12,y = 0  получаем неверное равенство

2 ⋅ π+ π =0,
   4  2

поэтому эта пара не подходит. А вот пара (x= − 1√2;y =0)  подходит, так как равенство

2 (− π)+ π = 0
    4   2

верно.

Ответ:

(−√1-;0)
    2

Ошибка.
Попробуйте повторить позже

Задача 8#77812

Найдите для всех натуральных n >1  положительные решения системы

{  x +2x + ⋅⋅⋅+ nx = 3
   11+ -21-+⋅⋅⋅+-1n =3
   x1  2x2      nxn

Источники: Бельчонок - 2022, 11.2 (см. dovuz.sfu-kras.ru)

Показать ответ и решение

Обозначим y = kx
 k    k  и сложим уравнения системы:

(    1-)  (    1-)      (    1-)
 y1+ y1 +  y2+ y2 + ...+  yn+ yn  =6

Для положительных чисел справедливо неравенство об обратных: a + 1a ≥ 2.  Поэтому левая часть не меньше 2n,  отсюда n ≤3.  При n= 3  каждое из слагаемых равно 2,  отсюда y1 =y2 = y3 = 1,  и x1 = 1,x2 = 12,x3 = 13.  При n =2  получается система:

{               {
   x1+2x2 = 3, ⇒   2x2 = 3− x1,
   1x1-+ 12x2-=3.      1x1-+ 3−1x1-=3.

Решая последнее уравнение, получаем, что     3±√5     3∓√5
x1 =--2-,x2 =-4--.

Ответ:

 x = 3±√5,x = 3∓√5
 1    2   2   4  при n= 2;

         1     1
x1 =1,x2 = 2,x3 = 3  при n= 3;

при других n  решений не существует.

Ошибка.
Попробуйте повторить позже

Задача 9#31169

Решите систему уравнений

{ xy − z2 = 9,
  x2 +y2+ z2 = 18.

Источники: по мотивам ОММО - 2020

Показать ответ и решение

Система равносильна

{ 2xy = 18+ 2z2,
  x2 +y2 = 18− z2.

Так как x2+ y2 ≥ 2xy  , то

18− z2 ≥18+ 2z2 =⇒ z2 ≤ 0=⇒ z = 0

В итоге получим систему

(
|{  z = 0;
|  x2+ y2 =2xy;
(  xy = 9.

То есть x= y = ±3,z =0,  откуда и получаем ответ.

Ответ:

 (−3,−3,0),(3,3,0)

Ошибка.
Попробуйте повторить позже

Задача 10#49484

Решите систему уравнений

(| √x = y+z;
{ √y = z+2x-;
|( √-   x+2y-
   z =  2 .

Источники: Высшая проба - 2023, 8.3 (см. olymp.hse.ru)

Показать ответ и решение

Первое решение.

На ОДЗ все переменные неотрицательны. Если хотя бы одна равна нулю, то сумма остальных также нулевая и все переменные равны     0  . Учтём это и далее будем считать, что все переменные больше нуля.

Не умаляя общности (в силу симметрии), пусть x≤ y ≤ z  , тогда посмотрим на первое уравнение

√-   y+z   x+ x
 x = -2--≥ -2--= x  ⇐⇒   x∈ [0,1]

При этом для последнего уравнения

√ -
  z = x+2-y≤ z+2-z= z ⇐⇒   z ≥ 1

Итак, с одной стороны  -
√x ∈[0,1]  и y+z2-∈[0,1]  ⇐⇒   y+ z ∈[0,2] =⇒  y ∈[0,1]  (поскольку z ≥ 1  ). С другой стороны,  -
√z ≥ 1  , откуда x+2y≥ 1  =⇒   x= y = 1  (поскольку только в этом случае возможно равенство). Отсюда сразу же получаем z =1.

Второе решение.

ОДЗ: x≥ 0,y ≥0,z ≥ 0  . Пусть, не умаляя общности, x ≤y ≤z.

К неотрицательным числам мы имеем право применить неравенство о средних для двух чисел:

(|{  √x= y+2z≥ √yz;
   √y = z+2x≥ √zx;
|(  √z = x+2y≥ √xy.

Перемножая неотрицательные части всех неравенств системы получаем следствие √xyz ≥ xyz.  Отсюда

xyz ≤ 1 (*)

Докажем, что для нетривиального (0,0,0)  решения системы в этом неравенстве должно достигаться равенство.

Сложим три уравнения исходной системы:

√x+ √y +√z-= x+y +z

Нам подходит случай x =y =z =0,  эта тройка удовлетворяет исходной системе. Иначе из равенства выше делаем вывод, что все три числа меньше единицы быть не могут, ведь тогда левая часть равенства очевидно окажется больше правой (для t= 0 √t =t,  для 0 <t< 1 √t->t).

Рассмотрим тогда случай, когда ровно два числа меньше единицы: x ≤y <1 ≤z  . Но тогда и третьей число оказывается меньше единицы: √z = x+y< 1+1 =⇒   z < 1.
     2    2

Рассмотрим случай, когда ровно одно число меньше единицы: x< 1≤ y ≤ z.  Но это противоречие 1> √x= y+z≥ 1+1= 1.
        2    2

Остаётся случай, когда 1 ≤x ≤y ≤z.  Но тогда 1 ≤xyz.  Но из (*) xyz ≤ 1  (это было следствие системы после применения неравенства о средних). Остаётся только вариант, чтобы в неравенстве достигалось равенство, для (*) это, как известно, происходит при равенстве чисел. Из системы получаем x= y = z = 1.

Ответ:

 (0;0;0),(1;1;1)

Рулетка
Вы можете получить скидку в рулетке!