Оценки в системах
Ошибка.
Попробуйте повторить позже
Решите систему уравнений
Источники:
Подсказка 1
Сразу понимаем, что, скорее всего, эта система "нормально" не решается. У нас два уравнения с кучей неизвестных. Но одно из решений мы сразу угадываем — это один из x равен 3, а остальные 0. Давайте поделим обе части первого уравнения на 3¹⁰. Как тогда можно оценить каждое из слагаемых?
Подсказка 2
Ага, тогда понятно, что каждое из слагаемых не превосходит единицы, так как степень у них чётная. Значит, для любого 1≤k≤92 получаем, что |x_k/3|≤1. Не забываем про модуль, так как извлекаем корень из чётной степени. Но раз у нас число меньше 1 то, что можно сказать о нём при возведении в степень?
Подсказка 3
Верно, тогда это число в 33 степени меньше, чем в 10. Теперь, учитывая это, попробуйте записать неравенство для второго и первого уравнения, используя неравенство с модулем. Выходит, что возможен только случай равенства |x_k/3|³³ = |x_k/3|¹⁰ для данных k.
Заметим, что
Тогда для каждого имеем откуда
Окончательно получим
Значит, для каждого выполнено
откуда
Отсюда несложно получаем, что тогда один из равен а все остальные равны
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!