Работа с суммой цифр
Ошибка.
Попробуйте повторить позже
Над девятизначным числом разрешается производить следующее действие: любую цифру числа можно заменить на последнюю цифру суммы цифр этого числа. Можно ли с помощью таких действий из числа получить число ? В ответ укажите “да” или “нет”.
Подсказка 1
В таких задачах бывает очень полезно заметить что-то, что не меняется при наших операциях, так называемый инвариант. Потому как, если бы у начального числа это что-то было бы одним, а у конечного числа - другим, то мы бы сказали, что это невозможно. Попробуйте поделать операции, которые описаны в задаче и посмотреть на число, которое получается после замены. Может быть в нем что-то постоянно?
Подсказка 2
Ну вот , допустим , мы первый раз проделаем эту операцию. Цифра на которую надо будет заменять - это последняя цифра числа 35. То есть 5 - нечетная. Значит, все цифры нашего числа останутся нечетными. Но ведь проделав эту же операцию еще раз, мы опять получим нечетную цифру и, значит, опять число будет состоять только из нечетных цифр. Значит, мы нашли наш инвариант! А что теперь это нам дает? Правда, что мы решили задачу?
Заметим, что сумма цифр исходного числа нечётна. Тогда после замены оно всё ещё будет состоять только из нечётных цифр и снова сумма цифр будет нечётна. Это означает, что число мы не получим, так как в нём есть чётные цифры.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!