Тема . Десятичная запись и цифры

Работа с суммой цифр

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела десятичная запись и цифры
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#46231

Целые, положительные, шестизначные числа a
1  и a
 2  такие, что если к сумме цифр числа a
 1  прибавить сумму цифр числа a
 2  , то получится 36.  Найти наибольшее возможное при этих условиях значение a1 ⋅a2  .

Источники: Росатом-17, 11.3 (см. rsr-olymp.ru)

Подсказки к задаче

Подсказка 1!

Сумма 36 - не так уж много! Давайте попробуем понять, какая максимальная сумма у наших чисел! Каждое из них не больше 990000...

Подсказка 2!

Осталось оценить произведение и не забыть, что нужен пример!

Показать ответ и решение

Посмотрим сначала на сумму этих чисел. Заметим, что она не превосходит 990000+ 990000= 18 ⋅100000 +18⋅10000  . Действительно, каждая цифра отвечает за то, сколько раз нам взять число  k
10,k∈ {0,...5} . Каждая цифра не больше 9  , потому сумму больше мы получить просто не можем — выгоднее всего брать максимальные степени 10  , что мы и сделали.

Итак, мы знаем, что                                  2
a1+ a2 ≤ 2⋅990000 =⇒  a1⋅a2 ≤ 990000  (по неравенству о средних максимум произведения при фиксированной сумме достигается при равенстве чисел). То есть наша оценка достигается при a1 = a2 =990000  , что удовлетворяет условию.

Ответ:

 9900002

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!