Работа с суммой цифр
Ошибка.
Попробуйте повторить позже
Пусть обозначает сумму цифр натурального числа . Найдите наибольшее -значное натуральное число , удовлетворяющее условию: для всех натуральных () справедливы равенства .
Источники:
Подсказка 1
Не совсем понятно, как нам искать максимальное подходящее число из 85значных чисел. Быть может, рассмотрим какие-нибудь большие числа и посмотрим, подходят ли они?
Подсказка 2
Докажем, что число 10^85 - 1 подходит. Посмотрим, что происходит при умножении на какое-то число, известно ли нам что-нибудь о его виде? О сумме цифр? Удобно рассматривать m без нулей на концах.
Подсказка 3
Что происходит, когда мы отнимаем от числа m * 10^85 число m? Удобнее всего рассмотреть вычитание столбиком.
Подсказка 4
У 86 -го разряда числа m * 10^85 занимается единица. Тогда у остальных младших 85 разрядов вместо 0 будет 9, кроме последнего, у которого будет 10. А что будет в ответе в этих разрядах? Какой будет сумма в этих разрядах?
Подсказка 5
Тогда сумма цифр до 86 -го разряда будет равняться 9*84 + 10 - S(m). Осталось лишь найти, чему будет равна сумма чисел в оставшихся разрядах!
Максимальное -значное натуральное число это Докажем, что оно подходит под условие.
Если тогда Сумма цифр у числа равняется Рассмотрим сумму цифр у Будем рассматривать такие что они не оканчиваются на так как нули не влияют на сумму цифр Соответственно переходов через разряд у нет.
Когда из вычитается число происходит следующее:
(a) У -го разряда числа занимается единица. Тогда у остальных младших разрядов вместо будет кроме последнего, у которого будет
(b) При вычитании числа в результате будет в разрядах будет записываться такая цифра, что в сумме с цифрой из стоящей на том же разряде, они дадут кроме первого разряда, у которого в сумме будет
Тогда сумма цифр до -го разряда будет равняться
так как изначально было девяток и одна десятка.
Оставшаяся сумма цифр числа будет равняться Но учитывая ограничения, которые мы ввели, получаем, что
Тогда сумма цифр числа это
что совпадает со суммой цифр числа
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!