Тема . Уравнения в целых числах

Разложение на целые скобки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#69408

Решите уравнение

 4   2   2
x + y = xy + y

в натуральных числах.

Источники: Бельчонок-2023, 11.5 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Мы видим, что в уравнении все коэффициенты равны 1. Это наводит нас на мысль о том, что надо искать связь между x и y. У нас есть удобное слагаемое y, поэтому разумно оставить его и попытаться пораскладывать остальные слагаемые...

Подсказка 2

Мы видим, что можно вынести y² за скобку. Тогда получится, что x⁴-y²(x-1)=y. Если отнять от обеих частей 1, можно получить, что (x-1)(x³+x²+x+1-y²)=y-1. Пускай x≠1, тогда y-1 делится на x-1, т.e. y=k(x-1)+1. Теперь можно подставить вместо y k(x-1)+1 и посмотреть, что получится...

Подсказка 3

После подстановки и сокращения на (x-1) можно заметить, что наше равенство имеет вид k-3=(x-1)(...). Тогда k=m(x-1)+3 или m=(k-3)/(x-1). Вспоминаем, что k=(y-1)/(x-1) и получаем, что m=(y-3x+2)/(x-1)². Кажется, что от делимости мы уже ничего не получим. Может тогда попробовать метод оценки...

Подсказка 4

Попробуйте понять, бывает ли целое число m больше или равно 1...

Подсказка 5

Пускай m≥1.Тогда y≥x²+x-1 ⇒ x⁴=(x-1)y²+y≥x⁵+x⁴-3x³+4x-2, что неверно при x>1. Получается, что m<1 ⇔ m≤0. Тогда k может принимать значения 1, 2 или 3. Проверьте эти значения и не забудьте рассмотреть случай x=1!

Показать ответ и решение

Уравнение равносильно

 4       2     2
x − 1= xy +y − y − 1

           2       2
(x − 1)(x +1)(x + 1)= y(x− 1)+(y− 1)

Если x− 1= 0,  то y− 1 =0,  запишем эту пару (1;1)  в ответ.

Теперь рассмотрим x> 1.  Тогда x − 1  это натуральное число и на него делится левая часть уравнения

(x− 1)⋅((x+ 1)(x2+ 1)− y2)= y− 1

А значит, y− 1= ℓ(x − 1)  для некоторого натурального числа ℓ.

После подстановки и сокращения на x − 1  получим уравнение:

(x+ 1)(x2+1)− (1+ ℓ(x − 1))2 =ℓ(x− 1)

(x− 1)2ℓ2+(2x− 1)ℓ− x3− x2 − x =0 (∗)

Если снова посмотреть по модулю x− 1,  то есть разделить в столбик левую часть на натуральное число x− 1  , то окажется, что число

m =-ℓ− 3 = y−-3x-+22
   x − 1   (x− 1)

должно быть целым.

Более того, m< 1,  поскольку это равносильно неравенству y <(x− 1)2+ 3x− 2= x2+x − 1,  которое верно при x >1.

Действительно, если y ≥x2+ x− 1,  то x4 = (x − 1)y2 +y ≥(x− 1)(x2+ x− 1)2+ x2+ x− 1= x5+x4− 3x3+4x − 2,  что невозможно при x > 1.

Таким образом, m <1  =⇒   m ≤ 0,  а значит, ℓ∈{1;2;3}.

При ℓ= 1  уравнение (∗)  принимает вид − x(x2+1)= 0,  что невозможно для x> 1.

Если ℓ= 2,  то число m  будет целым только при x= 2,  однако пара (ℓ,x)= (2,2)  не удовлетворяет уравнению (∗).

При ℓ= 3  уравнение (∗)  переписывается в виде (x− 1)2(x− 6)=0.  Отсюда находим, что x= 6  и затем y =ℓ(x− 1)+ 1= 16.

Ответ:

 (1;1),(6;16)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!