Тема . Уравнения в целых числах

Разложение на целые скобки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76179

Решите в целых числах уравнение x2 +6xy+ 8y2+ 3x+ 6y = 2.

Подсказки к задаче

Подсказка 1

Слева есть произведение xy и квадраты x² и y². Это намекает, что можно попытаться разложить выражение в левой части на целые скобки.

Подсказка 2

Понятно, что для разложения на множители, надо будет перегруппировать слагаемые, причем в одной скобке будем выносить x с каким-то коэффициентом, а в другой — y тоже с каким-то коэффициентом. Мы хотим, чтобы после этих вынесений получились два слагаемых с одинаковыми скобками. Тогда перед вынесением надо перегруппировать так, чтобы получились две скобки, в каждой из которых есть xy с коэффициентом. Можно ли получить сумму таких скобок?

Подсказка 3

Подумаем, с каким коэффициентом можно было бы вынести y из одной из скобок. У нас есть 8y² и 6y. Их общую часть будем выносить, то есть 2y. С каким коэффициентом хочется выделить xy для скобки, из которой будем выносить 2y?

Подсказка 4

Конечно, этот коэффициент должен быть четным, так как выносим 2y. Так что глобально в первую очередь хочется попробовать два варианта: 2xy и 4xy. Получится ли тогда разложить?

Подсказка 5

Да, получится! Сгруппируем так: (x² + 4xy + 3x) + (8y² + 2xy + 6y). Тогда получится следующее разложение: (x + 2y)(x + 4y + 3). Тогда у нас получилось, что произведение двух целых скобок равно 2. При каких условиях это могло произойти?

Показать ответ и решение

Левую часть разложим на целые скобки

 2        2
x + 6xy+8y + 3x+ 6y =(x+ 2y)(x+ 4y+3)

Целые делители двойки (правая часть) это ±1,±2.

1)x+ 2y = 2,x+ 4y+ 3= 1 ⇐⇒   x= 6,y =− 2

2)x+ 2y = 1,x+ 4y+ 3= 2 ⇐⇒   x= 3,y =− 1

3)x+ 2y = −2,x +4y+ 3= −1 ⇐⇒   x =0,y = −1

4)x+ 2y = −1,x +4y+ 3= −2 ⇐⇒   x =3,y = −2

Ответ:

 (6, −2), (3, −1), (0, − 1), (3, −2)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!