Тема . Уравнения в целых числах

Разложение на целые скобки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92978

Решите в целых числах уравнение x2 =y2+ 4y+ 11.

Подсказки к задаче

Подсказка 1

Давайте вспомним стандартные методы решения таких уравнений. Можно как-нибудь разложить выражение на скобочки, получить произведение, равное числу, и перебрать. Можно зажать что-то между квадратами.

Подсказка 2

Давайте запишем левую часть в виде (y+2)²+7. Кажется, теперь понятно, как реализовать оба способа из первой подсказки.

Показать ответ и решение

Перепишем равенство в следующем виде:

 2       2
x = (y+ 2) + 7

Таким образом, мы получаем два квадрата, отличающихся на 7.  Давайте заметим, что между 52  и 42  разница уже больше 7.  Значит, между большими квадратами разница будет также больше 7,  так как разность между соседними квадратами — возрастающая функция, а разница между несоседними квадратами включает в себя разницы между некоторыми соседними.

Значит, x2  и (y+ 2)2  могут принимать значения 0,1,4,9,16.  С помощью перебора понимаем, что x2 =16,(y +2)2 = 9,  откуда x =±4,y = −2 ±3.

Ответ:

 x =±4,y = −2 ±3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!