Тема . Уравнения в целых числах

Разложение на целые скобки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#92980

Решите в натуральных числах уравнение

  2   2   2
13x + y + z − 4xy− 6xz+y =5
Подсказки к задаче

Подсказка 1

Кажется, что выражение слева чаще всего принимает довольно большие значения, то есть оно может равняться 5 при очень ограниченном количестве значений, если вообще может.

Подсказка 2

Выражение слева выглядит довольно сложным. Чтобы реализовать догадки из подсказки 1, его нужно преобразовать к более простому виду.

Подсказка 3

Попробуйте поискать полные квадраты и выделить их в левой части, это поможет реализовать подсказки.

Показать ответ и решение

Выделим полные квадраты:

      2       2
(2x − y) + (3x− z) +y = 5

Получаем, что сумма двух квадратов и натурального числа равна 5.  Значит, квадраты могут принимать лишь значения 0,1,4.  Возможны случаи, когда квадраты равны 1  и 1,1  и 0,0  и 1,0  и 4,4  и 0,0  и 0.  Осталось перебрать их и написать ответ.

Ответ:

 (2,4,5),(2,4,7),(2,3,5),(1,3,2),(2,3,7),(1,3,4)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!