Тема . Уравнения в целых числах

Разложение на целые скобки

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#95968

Найдите все пары простых чисел, разность квадратов которых является простым числом. Напомним, что натуральное число называется простым, если у него ровно 2  делителя: 1  и само это число. Начало ряда простых чисел: 2,  3,  5,  7,  11,  13,

Подсказки к задаче

Подсказка 1

Представим, что такая пара существует. Пусть это пара p, q. Тогда по условию p² - q² — простое число. Какой вывод можно сделать?

Подсказка 2

p² - q² = (p - q) * (p + q) и по условию такое число простое. В таком случае, что можно сказать про p - q?

Подсказка 3

p - q должно быть равно 1. Ведь иначе, p² - q² не будет простым по определению. Остаётся найти такие простые числа, разность между которыми равна 1!

Показать ответ и решение

Пусть p  и q  — простые числа и p2− q2 = (p − q)(p+ q)  — простое число. Тогда p− q = 1.  Следовательно, одно из наших чисел чётно, то есть q = 2,  p= 3.

Ответ: (2; 3)

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!