Тема . Уравнения в целых числах

Оценки в уравнениях над Z

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела уравнения в целых числах
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#32939

Решите уравнение в натуральных числах

 6   3      4
x + 3x + 1= y .
Подсказки к задаче

Подсказка 1


Эх, ну вот почти полный квадрат перед нами – всё портит эта тройка! Стояли бы там 2 или 4 всё бы было получше, не правда ли? Кстати, заметьте, что теперь мы решаем уравнение не в целых, а в натуральных числах – как это может помочь?

Подсказка 2


y^4 = (y^2)^2 – фактически нас просят доказать, что выражение слева является квадратом квадрата, но раз так, то оно и просто квадрат, не правда ли?

Подсказка 3


Вспомните интересный способ доказательства того, что число не квадрат – можно зажать его между двумя соседними квадратами! Если вы всё ещё в недоумении, просто прочтите все 3 подсказки в связке и внимательно!

Показать ответ и решение

Поскольку x> 0  , то

 3    2   6   3      6   3      6   3       3   2
(x +1) = x +2x + 1< x +3x + 1< x + 4x + 4= (x +2) .

Мы показали, что x6+ 3x3+ 1  находится между двумя соседними квадратами, откуда это выражение не может быть квадратом, то есть не может быть равно y4  .

Ответ:

таких (x,y)  нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!