Трапеция
Ошибка.
Попробуйте повторить позже
В трапеции
Докажите, что
Первое решение.
В силу параллельности
Отложим от точки отрезок
Тогда — параллелограмм (т. к.
а
Значит, как односторонние углы при секущей
Найдем угол
Получили, что Тогда
— равнобедренный, в котором
В итоге,
______________________________________________________________________________________________________________________________________________________
Второе решение.
Отложим на прямой за точку
отрезок
равный
Т.к. можем получить
Треугольник равнобедренный, т.к.
поэтому
Получаем, что
Следовательно, значит,
Но мы знаем, что
поэтому
— параллелограмм.
Значит,
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!