Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#83235

В остроугольном треугольнике ABC  проведены биссектриса BL  и высота BK.  Прямые BL  и BK  пересекают вторично описанную окружность треугольника ABC  в точках W  и T  соответственно. Оказалось, что BC = BW.  Докажите, что TL ⊥ BC.

Источники: КМО - 2024, вторая задача второго дня для 10-11 классов, автор Шурыгин В.Е. (cmo.adygmath.ru)

Показать доказательство

Из вписанности ∠BAL  =∠BAC  =∠BW C  . Получается, что в треугольниках BAL  и BW C  равны две пары соответствующих углов, значит, равные углы и в третьей паре: ∠BLA = ∠BCW  . Но из условия BC = BW  следует ∠BW C = ∠BCW  , отсюда ∠BAL = ∠BLA.

PIC

Получается, что треугольник BAL  равнобедренный (BA = BL )  , тогда BT  — его ось симметрии. Значит, ∠BTL =∠BT A  . Но ∠BT A= ∠BCA  =90∘− ∠CBK  . Видим, что ∠BTL = 90∘− ∠CBT  , откуда TL⊥ BC.

Замечание.

После установления симметрии треугольника BAL  относительно BT  , можно завершить решение разными способами. Например, заметив, что

∠TCW + ∠CW B =∠T BW + ∠CAB = ∠TBA +∠CAB  = 90∘.

Тогда CT ⊥ BW  , и в силу CK ⊥ BT  , получаем, что L  — точка пересечения двух высот в треугольнике BCT.  Значит, TL  — третья высота, то есть TL ⊥ BC.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!