Тема . Треугольники и их элементы

Медианы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники и их элементы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#47237

Периметр треугольника ABC  равен 24  cм, а отрезок, соединяющий точку пересечения его медиан с точкой пересечения его биссектрис, параллелен стороне AC  . Найти длину AC  .

Источники: Всесиб-2013, 11.3 (см. sesc.nsu.ru)

Показать ответ и решение

Первое решение.

PIC

Обозначим через AK  медиану из вершины A  , через M  - точку пересечения медиан ABC  , через I - точку пересечения его биссектрис AA1,BB1,CC1  . Проведём через K  прямую параллельно AC  , пересекающую биссектрису BB1  в точке P  - её середине. По теореме Фалеса PI :IB1 =KM  :MA = 1:2,  поэтому BI :IB1 = 2:1  . По свойству биссектрис AI  и CI  в треугольниках ABB1  и CBB1  имеем AB :AB1 = BI :IB1 = CB :CB1 =2 :1  . Отсюда AC = 12(AB + BC)= 13(AB +BC + AC)= 8.

Второе решение.

PIC

Пусть AA2,BB2  — биссектрисы, BB1,CC1  — медианы, BH  — высота, P  — периметр △ABC.  Пусть I =AA2 ∩BB2,Z = BB1∩ CC1  , тогда IZ ∥ AC.  Отсюда следует

                                  3
ρ(I,AC)= r= ρ(Z,AC ) =⇒   ρ(C1,AC )= 2r

ρ(C1,AC)= 3r  =⇒   ρ(B,AC )= BH =2ρ(C1,AC )= 3r
         2

Из отношения высот получим

SAIC-  -r⋅AC--  1
SABC = BH ⋅AC = 3

S     r ⋅AC   AC    1           P
SAABICC--=-P-⋅r- =-P- = 3  =⇒  AC = 3-= 8
Ответ:

 8

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!