Медианы
Ошибка.
Попробуйте повторить позже
На продолжении за точку стороны равностороннего треугольника выбрана точка , через неё проведена прямая, параллельная . Эта прямая пересекает продолжение стороны в точке . Медианы треугольника пересекаются в точке . Точка — середина . Найдите углы треугольника
Источники:
Подсказка 1
Проведем отрезок АК такой, чтобы АК было параллельно СМ! Заметим, что тогда АКМС это параллелограмм.
Подсказка 2
Давайте заметим, что треугольник BNM правильный, откуда для его центра O: OM = ON ! Тогда мы можем попробовать отметить равные углы и равные отрезки на нашей картинке (их тут много!)
Подсказка 3
Попробуйте доказать, что треугольники KON и COM равны, и, используя, что D - точка пересечения диагоналей параллелограмма, подсчитать углы в треугольнике!
Рассмотрим , откуда — параллелограмм. Заметим, что
- В , откуда он равносторонний и (в силу симметрии).
- Треугольник правильный, откуда для его центра : .
- Аналогично предыдущему .
Отсюда по двум сторонам и углу между ними , тогда . Поскольку является точкой пересечения диагоналей параллелограмма, то и является медианой равнобедренного . Отсюда и
снова пользуясь правильностью . В итоге получаем .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!