Биссектрисы
Ошибка.
Попробуйте повторить позже
В треугольнике биссектрисы углов и пересекают стороны и в точках и соответственно. Известно, что длина стороны равна сумме длин отрезков и Найдите величину угла
Источники:
Подсказка 1
Раз у нас есть условие на то, что сторона AC равна сумме отрезок, то давайте разобьем нашу сторону как раз на две части, каждая из которых будет равна одному из отрезков в условии) Причем т.к. у нас тут биссектрисы, то удобно будет сделать так, чтобы равные отрезки прилегали к одной вершине. Разделим так нашу сторону точкой D. Что можно заметить на картинке теперь?
Подсказка 2
Пусть биссектрисы пересекаются в точке I. Тогда треугольники API и ADI равны! Тоже можно сказать про ICK и IDC. А дальше остается просто счет уголков)
Первое решение (счетное).
Давайте будет пользоваться свойством биссектрисы:
Тогда:
Теперь подставим это в
Домножим на знаменатели:
Тогда из теоремы косинусов для треугольника следует, что Отсюда получаем ответ.
Второе решение (более идейное).
Отметим точку на отрезке такую что Тогда из условия следует, что Заметим, что треугольники равны по двум сторонам и углу между ними. Аналогично равны треугольники Из этого следует:
Теперь воспользуемся тем, что
Тогда по теореме о сумме углов:
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!