Тема . Треугольники и их элементы

Биссектрисы

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники и их элементы
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#84494

В равнобедренном треугольнике ABC  из середины основания AB  к боковой стороне AC  проведен отрезок DE  — биссектриса угла ADC.  Из точки E  на боковую сторону BC  опущена высота EF.  Докажите, что отрезок FD  является биссектрисой угла EF B.

Показать доказательство

Пусть EF  пересекает CD  в точке X.

PIC

Заметим, что четырёхугольник BDXF  вписанный, так как противоположные углы по 90∘.  Тогда ∠A= ∠B = ∠DXE.  В треугольниках AED  и XED  соответственно равны две пары углов, поэтому получаем оставшееся равенство ∠AED  =∠XED.

Тогда ED  является биссектрисой внешнего угла △CEF.  При этом CD  является биссектрисой внутреннего угла △CEF  . Значит,  D  — центр вневписанной окружности треугольника CEF.  Значит, FD  — биссектриса угла EFB.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!