Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#43634

Точка E  — середина стороны AB  параллелограмма ABCD  . На отрезке DE  нашлась такая точка F  , что AD = BF  . Найдите градусную меру угла CFD.  В ответ внесите число.

Источники: Муницип - 2020, Москва, 8.4

Подсказки к задаче

Подсказка 1

У нас есть параллелограмм ABCD и точка E- середина стороны AB. Естественным построением в данном случае будет продление отрезка DE до пересечения с прямой BC. Что же оно нам дает?

Подсказка 2

Пускай луч DE пересекает прямую BC в точке K. Посмотрим на треугольники △AED и △KEB. У них AE=EB и ∠KEB=∠AED. Чего им не хватает, чтобы быть равными?

Подсказка 3

Еще одного уголочка! Но ведь прямые AD и CK параллельны, поэтому ∠EAD=∠EBK ⇒ △AED =△KEB. В частности, BK=AD=BC=BF. Повнимательнее посмотрите на треугольник △KFC и завершите решение!

Показать ответ и решение

Продолжим DE  до пересечения с прямой BC  в точке K  . Так как BK ∥AD  , то ∠KBE  = ∠DAE.  Кроме того, ∠KEB  =∠DEA  и AE = BE  , значит, равны треугольники BKE  и ADE.  Тогда BK = AD = BC.

PIC

Таким образом, в треугольнике CFK  медиана FB  равна половине стороны, к которой она проведена, поэтому этот треугольник — прямоугольный с прямым углом F.  Следовательно, и угол CFD  — прямой.

Ответ: 90

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!