Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#80232

В выпуклом пятиугольнике ABCDE  диагонали AD  и CE  пересекаются в точке X.  Оказалось, что ABCX  — параллелограмм и BD = CX; BE =AX.  Докажите, что AE = CD.

Источники: Олимпиада Эйлера, 2022, ЗЭ, 5 задача(см. old.mccme.ru)

Показать доказательство

Т.к. ABCX  — параллелограмм, то AB =CX = BD  и BC = AX =BE.  Из получившихся равнобедренных треугольников ABD  и BCE  и параллелограмма ABCX  делаем вывод, что ∠BEC = ∠BCE = ∠BAX = ∠BDA.  Пусть K  — пересечение CE  и BD,  а  L  BE  и AD.  Тогда

         ∘                  ∘
∠ABE = 180 − ∠BAL − ∠BLA = 180 − ∠LEX − ∠XLE = ∠LXE = ∠KXD =

    ∘                    ∘
= 180 − ∠XKD − ∠KDX = 180 − ∠BKC − ∠BCK = ∠CBD

По 1  признаку △CBD  = △EBA,  что и доказывает утверждение задачи.

PIC

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!