Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#89596

Внутри параллелограмма ABCD  отметили точку E  так, что CD = CE.  Докажите, что прямая DE  перпендикулярна прямой, проходящей через середины отрезков AE  и BC.

Подсказки к задаче

Подсказка 1

Непонятно, как на картинке считать углы, а доказать нужно перпендикулярность. Может быть, будем доказывать какой-то эквивалентный факт?

Подсказка 2

Рассмотрим середину DE, треугольник ECD - равнобедренный, а, значит, отрезок CT перпендикулярен DE.

Подсказка 3

Обозначим за M и N середины AE и BC, итак доказываем параллельность СТ и MN. У нас три середины отрезков на картинке отмечено, надо этим воспользоваться.

Показать доказательство

Обозначим середины AE, BC  и DE  за M,N  и T,  необходимо доказать перпендикулярность DE  и MN.  DE− основание равнобедренного треугольника DEC,  тогда его медиана CT  является также его высотой. Тогда нам достаточно доказать параллельность MN  и T C.

MT  — средняя линия треугольника AED,  то есть равна половине AD  и параллельна ему. В свою очередь NC  равен половине BC = AD  и параллелен AD,  а значит MT  и NC  параллельны и равны по длине, значит MNCT  — параллелограмм. А значит MN  и TC  параллельны.

PIC

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!