Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#86306

На сторонах AB,BC,CD  и DA  равнобедренной трапеции ABCD  с основаниями BC  и AD  отметили точки K,L,M  и N  соответственно. Оказалось, что KLMN  — параллелограмм. Докажите, что KP = MQ,  где P  и Q  — середины сторон AB  и CD  соответственно.

Показать доказательство

Отметим центр O  параллелограмма KLMN.  Он лежит на средней линии PQ  трапеции, поскольку NO = OL.  Продлим KM  до пересечения с BC  и AD  в точках S  и T  соответственно. Заметим, что OS =OT  и OM = OK,  а значит MS = KT.∠LMS = ∠TKN,  потому что ∠LMK  = ∠NKM.  Также отметим, что KN = ML.  Теперь видно, что ΔLMS  =ΔT KN  по первому признаку, а значит у них равные высоты MX  и KY,  проведённые к LS  и TN.  В силу равнобедренности трапеции ∠BAD  = ∠DCS.  Но тогда ΔCXM  = ΔKAY,  а вместе с этим CM = KA.  Следовательно, MQ = CQ − CM =P A− AK = KP,  что и требовалось.

PIC

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!