Тема . Четырёхугольники

Средняя линия четырёхугольника и прямая Ньютона

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела четырёхугольники
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#31334

В трапеции ABCD  с основаниями AD = a  и BC = b  проведены диагонали AC  и BD  . Их середины обозначим через K  и M  соответственно. Чему равен отрезок KM  ? Ответ выразите через a  и b  .

Подсказки к задаче

Подсказка 1

Сразу будем считать, что a>=b. Мы знаем что K и M это середины диагоналей. Какая хорошая прямая в трапеции может проходить через эти точки?)

Подсказка 2

Да, средняя линия трапеции! Пусть её точка на отрезке AB это X, а на отрезке CD это Y. Как можно выразить XK и MY?

Подсказка 3

Стоит воспользоваться тем, что XK например параллельна BC и найти подобие)

Подсказка 4

Да, XK = b/2! аналогично можно найти MY, вспомнить чему равно XY и найти KM)

Показать ответ и решение

Пусть a ≥b  . Проведём среднюю линию трапеции YG  , как на чертеже:

PIC

Она проходит через точки K  и M  , тогда

YG = a+-b,
      2

а также

GM = KY = BC- =-b,
           2   2

то есть

      a+-b     a−-b
KM  =  2  − b=  2

В случае b> a  всё аналогично, а чтобы объединить случаи, можно просто поставить модуль:

      |a-− b|
KM  =   2
Ответ:

 |a−-b|
  2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!