Вписанные углы и счёт углов в окружности
Ошибка.
Попробуйте повторить позже
В выпуклом четырёхугольнике выполнено . Его диагонали и пересекаются в точке . Описанная окружность треугольника пересекает сторону в точке и продолжение стороны в точке . Найдите отношение отрезков и .
Источники:
Подсказка 1
Заметьте, что AP и QD – хорды окружности, описанной около треугольника AED. Значит, чтобы доказать, что они равны, нам требуется доказать, что на данные хорды опираются равные вписанные углы. То есть если мы докажем, что углы QAD и ADP равны, то решим задачу. Подумайте, при каком условии данные углы могут быть равны.
Подсказка 2
Обратите внимание, что углы QAD и ADP – накрест лежащие для прямых PD и AQ, а значит, если мы докажем параллельность данных прямых, то решим задачу.
Подсказка 3
В условии не просто так нам дали, что три стороны четырехугольника попарно равны. Давайте рассмотрим равнобедренные треугольники ABC и BCD, а конкретно, рассмотрим их равные углы при основаниях. Подумайте, как они могут помочь в доказательстве параллельности прямых PD и AQ.
Подсказка 4
Рассмотрим два соответственных угла AQD и PDC. Из вписанности четырехугольника AQDE следует равенство ∠AQD = ∠DEC. Обратите внимание, что DEC является внешним углом треугольника BCE, значит, он равен сумме углов EBC и ECB. Вспомним про равнобедренные треугольники: в них есть два равных угла ∠EBC = ∠BDC. Значит, для решения задачи остается доказать, что ∠PDB = ∠ECB. Подумайте, как в этом может помочь окружность.
Подсказка 5
Четырехугольник APDQ является вписанным, значит, углы PAE и PDE будут равными, а угол PAE будет равен углу BCA, так как это углы при основании равнобедренного треугольника.
Первое решение.
Из вписанности четырехугольника следует, . Треугольник является равнобедренным, а значит , следовательно, .
Из равнобедренности треугольника следует, что .
Наконец, в силу вписанности четырехугольника
Второе решение.
Достаточно показать, что хорды и стягивают равные дуги в окружности , то есть доказать равенство . По теореме о внешнем угле верно,
Поскольку треугольник является равнобедренным , а из вписанности четырехугольника следует, что . Таким образом,
Аналогично,
Наконец, исходное равенство углов можно переписать в виде
что верно, так как суммой углов в каждой части равна углу между диагоналями четырехугольника.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!