Касание с окружностью и касание окружностей
Ошибка.
Попробуйте повторить позже
Две окружности и пересекаются в точках и , общая касательная касается окружностей и в точках и соответственно (точка лежит ближе к , чем точка ). Луч пересекает окружность в точках и . Найдите , если диагональ четырехугольника делит прямую в отношении считая от вершины .
Подсказка 1
Сразу попробуем воспользоваться условием и отметим равные углы. А чему равен угол ACD? Как воспользоваться тем, что CD - касательная?
Подсказка 2
Угол ADC равен AED, а угол ACD равен 180 - ABC. Что полезного можно вывести из этого? Как поближе подобраться к углам треугольника AED?
Подсказка 3
Угол ABE равен углу ACD (почему?). Как воспользоваться вписанностью? Нам было бы очень хорошо, если бы мы понимали, как воспользоваться тем, на какие отрезки AM делит AM...
Подсказка 4
Оказывается, треугольники AED и ADC подобны! Тогда что можно сказать интересного о прямой AM?
Подсказка 5
Это биссектриса угла AEC! Как воспользоваться найденным подобием? Вспоминаем свойство биссектрисы и находим требуемую дробь!
Отметим равные углы. по свойству угла между касательной и хордой. Градусная мера угла вдвое меньше дуги содержащую окружности по свойству угла между касательной и хордой. Тогда так как градусная мера дуги не содержащую равняется Следовательно, Также как вписанные. Из этого следует, что треугольники и подобны. Это значит, что то есть — биссектриса угла Запишем соотношения из подобия и
По теореме о биссектрисе получаем
Тогда получаем, что
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!