Тема . Окружности

Касание с окружностью и касание окружностей

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#87531

В круговой сектор радиуса R  с центральным углом α  (0< α≤ π∕2)  вписаны две окружности (обе касаются радиусов-сторон сектора, друг друга внешним образом, а большая касается окружности сектора). Какую наибольшую долю может составлять расстояние между центрами вписанных окружностей от величины R  и при каком значении α  это достигается?

Источники: Надежда энергетики - 2024, 11.4 (см. www.energy-hope.ru)

Подсказки к задаче

Подсказка 1

Попробуем ввести обозначения, переписать данное через эти переменные и выразить искомое через них. Что лучше взять за x и y?

Подсказка 2

Пусть радиусы окружностей будут x и y. Мы можем записать следствие из подобия прямоугольных треугольников с катетами - радиусами окружностей. Как можно выразить (x + y) / R?

Подсказка 3

Пусть t = y / R. Тогда искомое можно выразить через t. Это будет парабола, наибольшее значение которой на отрезке можно найти через вершину.

Показать ответ и решение

Обозначим радиусы малой и большой вписанных окружностей через x  и y  , введём величину β = α
   2  . Отметим, что        π
0 <β < 4  .

PIC

Выразим стороны треугольника через радиусы трёх окружностей.

OO2 = R − y, OO1 = R− x− 2y

Из подобия прямоугольных треугольников получаем

--1-= R-− y-= R−-x−-2y
sin β    y       x

Откуда

R-= R-− 2x
y     x

-x        y- y-
R = (1− 2⋅R)⋅R

Расстояние между центрами вписанных окружностей O1O2  равно x+y  .

Рассмотрим искомое отношение

x +y       y y   y       y  y
--R- = (1− 2R)R-+ R-= 2(1− R)R-

Относительно величины t= yR-  это отношение есть парабола 2t(t− 1)  . Выразим параметр t  через угол β  .

si1nβ = Ry − 1

t= y= --sinβ--= ---1---
   R  1 +sinβ   1+ s1inβ

Таким образом, при изменении β  от 0  до π
4  параметр t  растёт от 0  до √ -
  2− 1  . Остаётся найти максимум параболы 2t(1− t)  на полученном отрезке   √-
[0; 2− 1]  . Вершина параболы лежит правее отрезка, следовательно искомый максимум достигается при        √-
t= t0 = 2− 1  и равен   √ -
2(3 2− 4)  .

Ответ:

 2(3√2-− 4)  при α= π
   2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!