Степень точки и радикальные оси
Ошибка.
Попробуйте повторить позже
На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения любых двух из них проведена прямая. Докажите, что эти прямые пересекаются в одной точке или параллельны.
Степени точек пересечения двух окружностей относительно каждой из этих пересекающихся окружностей равны нулю, поэтому они лежат на радикальной оси. Если точек пересечения две, то они однозначно задают радикальную ось.
Если центры окружностей не лежат на одной прямой, то радикальная ось первой и второй окружностей пересекается с радикальной осью второй и третьей окружностей. Степени точки пересечения относительно всех трёх окружностей равны, поэтому она также лежит на радикальной оси первой и третьей окружностей.
Если центры окружностей лежат на одной прямой, то радикальные оси параллельны между собой, так как они перпендикулярны одной и той же прямой — линии центров.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!