Степень точки и радикальные оси
Ошибка.
Попробуйте повторить позже
Будем называть треугольник вписанным в треугольник
, если точки
,
,
находятся на сторонах
,
,
соответственно.
1. Докажите, что если отрезок параллелен отрезку
, то описанные окружности треугольников
и
пересекаются на
прямой
.
2. Оказалось, что ,
. Докажите, что точка, симметричная
относительно
, лежит на пересечении описанных
окружностей треугольников
и
.
3. Пусть . Средняя линия треугольника
, параллельная
, пересекает
и
в точках
и
соответственно. Докажите, что точка
,
,
,
лежат на одной окружности.
4. В треугольник вписан треугольник
, гомотетичный треугольнику
. Докажите, что описанная окружность
треугольника
касается описанной окружности
тогда и только тогда, когда касается описанной окружности
.
1. Пусть — вторая точка пересечения описанных окружностей
и
. Поскольку четырехугольник
описанный, то
. Четырехугольник
также описанный, значит
.
Поскольку , то
.
Получаем, что . Тогда
,
,
лежат на одной прямой.
2. Поскольку треугольники и
равнобедренные, то
и
. Тогда
Также из определения (точка, симметричная
относительно
) следует, что
Получается, что лежит на описанной окружности
.
Из определения как симметричной точки:
Значит, и
лежат на одной окружности с центром в
а
и
с центром в
Тогда выполнены следующие равенства
для вписанных и центральных углов:
Получаем, что лежит и на описанной окружности
.
3. Обозначим за и
середины
и
соответственно. Т.к.
, то
и
— касательные к
окружности, описанной около
.
Рассмотрим пару окружностей: описанная окружность треугольника и окружность нулевого радиуса с центром в точке
.
Рассмотрим степени точек
и
относительно данных окружностей:
Получаем, что — радикальная ось наших 2 окружностей. Тогда на этой же радикальной оси лежат
и
. Тогда
и
Следовательно,
— касательная к описанной окружности
, и
— касательная к
описанной окружности
. Тогда
4. Окружность повторно пересекает стороны
,
,
в точках
,
,
соответственно. Окружность
повторно пересекает стороны
,
,
в точках
,
,
соответственно.
Окружности и
повторно пересекаются в точке
. Заметим, что
поэтому лежит на окружности
. Также
поэтому лежит на окружности
. Аналогично
лежит на окружностях
,
.
Пусть — инверсия с центром в точке
и произвольным радиусом. Тогда
Также
Аналогично . Следовательно, треугольники
и
подобны. Проделывая аналогичные
рассуждения для двух других сторон мы получаем
Следовательно, угол между окружностями и
равен углу между окружностями
и
по подобию, с другой стороны, равен углу между окружностями
и
, поскольку инверсия сохраняет
углы.
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!