Тема . Счётная планиметрия

Четырёхугольники в окружности, счёт отрезков и углов, теорема Птолемея

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела счётная планиметрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#74503

В выпуклом четырехугольнике ABCD  длины сторон AB  и BC  равны, DB  — биссектриса угла ADC,AD :DC = 4:3.  Найдите косинус угла AKB,  если K  — точка пересечения диагоналей AC  и BD,  и BK :KD = 1:3.

Источники: ШВБ-2022, (см. olymp.bmstu.ru)

Показать ответ и решение

PIC

AD :DC = 4:3,  пусть AD =4x,DC = 3x,  BK  :KD = 1:3,  пусть BK = y,KD = 3y.  DK  — биссектриса треугольника ADC,  AK :KC = AD :DC =  =4:3,AK = 4z,KC = 3z.

Точка B  является точкой пересечения серединного перпендикуляра к диагонали AC  и биссектрисы угла D  в выпуклом четырехугольнике ABCD.  Следовательно, около этого четырехугольника можно описать окружность.

Действительно, опишем окружность около треугольника ACD,  обозначим точку пересечения биссектрисы угла D  с окружностью через B1.  Тогда по свойству вписанных углов дуги AB1  и B1C  будут равны, хорды AB1  и B1C  тоже будут равны, треугольник AB1C  будет равнобедренным, и серединный перпендикуляр к диагонали AC  и биссектриса угла D  будут пересекаться в точке B1.  Следовательно, B1 =B.

Поскольку около четырехугольника ABCD  можно описать окружность, то для его диагоналей верно равенство

AK ⋅KC  =BK ⋅KD, 4z2 =y2,y = 2z

Треугольник ABK  подобен DCK  , и CADB= BKKC-  , пусть AB =p,  поэтому

p-= y-= 2 ⇒ p= 2x⇒ x= p
3x  3z  3             2

AD = 2p, DC = 3p
              2

По теореме косинусов для треугольников ABC  и ADC  с учетом ∠B + ∠D =180∘ имеем

                              2
49z2 = 2p2 − 2p2cos∠B,49z2 = 4p2 + 9p-+ 6p2cos∠B
                             4

z = p, y = p, AK = p, BK = p
   4    2             2

Для равнобедренного треугольника ABK  имеем

          BK--  1
cos∠AKB  = 2AK = 4
Ответ:

 1
4

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!