Четырёхугольники в окружности, счёт отрезков и углов, теорема Птолемея
Ошибка.
Попробуйте повторить позже
Из точки пересечения диагоналей
и
вписанного четырёхугольника
опущены перпендикуляры
на
его стороны
соответственно, причём основания перпендикуляров принадлежат соответствующим сторонам. Найдите
площадь четырёхугольника
если известно, что
а расстояние от точки
до прямой
равно
Источники:
Поскольку четырёхугольник
вписанный и
как опирающиеся на одну дугу. Аналогично,
По условию — вписанный, поэтому
Отсюда,
Следовательно, — биссектриса угла
то есть точка
равноудалена от
и
Аналогично, точка
равноудалена
от всех сторон четырёхугольника
то есть является центром вписанной в него окружности.
Получается, — описанный, а суммы длин противоположных сторон описанного четырёхуголька равны. Значит, периметр
равен
Радиус же описанной окружности равен расстоянию от точки
до прямой
которое по условию
равно
Вспомним формулу площади описанных фигур
где — полупериметр, а
— радиус вписанной окружности.
Итак, тогда площадь равна
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!