Тема . Треугольники с фиксированными углами

Прямоугольные треугольники

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники с фиксированными углами
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#103658

Выразите сторону четырёхугольника, обозначенную буквой x  на рисунке, через его стороны a  и b  .

PIC

Подсказки к задаче

Подсказка 1

Продлим AD и BC до пересечения в точке O. Какие углы треугольника AOB можно выразить?

Подсказка 2

Верно! Угол ∠OAB равен 60° из смежных углов, а из прямоугольного треугольника DOC легко получить, что ∠AOB равен 60°. А что тогда можно сказать о треугольнике AOB?

Подсказка 3

Точно! Он является правильным. Тогда AO = OB = AB = b. Можно ли тогда теперь связать стороны треугольника DOC?

Подсказка 4

DOC — прямоугольный треугольник с углом в 30°, поэтому OC = 2OD. А как выражаются OC и OD через a, b и BC?

Показать ответ и решение

Продлим прямые AD  и BC  до пересечения друг с другом. Пусть они пересекаются в точке O.

PIC

Рассмотрим треугольник OAB.           ∘           ∘
∠OAB = 180 − ∠DAB = 60 по свойству смежных углов.         ∘           ∘
∠AOB = 90 − ∠DCO  =60 ,  так как сумма острых углов прямоугольного треугольника DOC  равна   ∘
90.  Получается, в треугольнике AOB  два угла равны   ∘
60 ,  а, значит, третий его угол так же равен  ∘
60,  то есть треугольник правильный. Отсюда OA = OB =AB = b.

Заметим, что CDO  — прямоугольный треугольник с углом   ∘
30.  Отсюда

OC =2OD = 2(OA+ OD )= 2(b+ a)

Тогда BC = OC − OB =2b+ 2a− b=2a+ b.

Ответ:

 2a+ b

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!