Тема . Треугольники с фиксированными углами

Прямоугольные треугольники

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники с фиксированными углами
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#31385

Вершину A  параллелограмма ABCD  соединили с серединой M  стороны CD  . Известно, что угол MAD  равен 30∘ . Докажите, что перпендикуляр BH  на прямую AM  равен одной из сторон параллелограмма.

Показать доказательство

Продлим AM  до пересечения с BC  в точке K  . Тогда DM = MC,∠ADM  = ∠MCK, ∠AMD  = ∠CMK  , а значит, ΔAMD   =ΔKMC  по стороне и двум прилежащим к ней углам, откуда AD = CK  , а ещё AD = BC  как противоположные стороны параллелограмма.

PIC

Первый способ.

В прямоугольном ΔBHK  проведём медиану CH  к гипотенузе, тогда CH =BC = CK  . В силу параллельности                  ∘
∠DAM  =∠MKC  = 30 . ΔCHK  — равнобедренный, тогда          ∘
∠CHK  =30 , откуда         ∘
∠BCH = 60 как внешний угол ΔCHK  . Заметим, что ΔBCH  — равнобедренный с углом   ∘
60 , а значит, равносторонний, BH = BC.

______________________________________________________________________________________________________________________________________________________

Второй способ.

В прямоугольном △BHK  катет BH  напротив угла в 30  градусов равен половине гипотенузы BK = 2BC  , так что равен одной из сторон параллелограмма.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!