Тема . Треугольники с фиксированными углами

Прямоугольные треугольники

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела треугольники с фиксированными углами
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#84745

В прямоугольном треугольнике ABC  с прямым углом C  проведена высота CH.  Пусть I,I
  1  и I
2  центры вписанных окружностей треугольников ABC,ACH  и BCH  соответственно. Докажите, что CI  перпендикулярно I1I2.

Показать доказательство

PIC

Заметим, что

∠CAI +∠ACI2 = ∠A-+90∘− ∠BCH--= 90∘
               2         2

А значит, AI ⊥CI2,  откуда I1I ⊥ CI2.  Аналогично I2I ⊥ CI1,  откуда следует, что I  это ортоцентр треугольника AI1I2.  А значит CI ⊥I1I2.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!