Гомотетия
Ошибка.
Попробуйте повторить позже
Даны две окружности и
, пересекающиеся в (несовпадающих) точках
. К этим окружностям проведены общие внешние
касательные, пересекающиеся в точке
. Прямая
повторно пересекает
в точке
, а прямая
повторно пересекает
в
точке
. Касательная к
в точке
и касательная к
в точке
пересекаются в точке
. Докажите, что точки
лежат на одной окружности.
Источники:
Назовём центры окружностей соответственно
и
Вторую точку пересечения
с
назовём
. Без ограничения
общности скажем, что радиус
меньше радиуса
(случай равенства радиусов невозможен, ведь тогда касательные не имели бы точки
пересечения). Тогда
лежит на отрезке
.
Докажем, что прямая составляет равные углы с касательной к
в точке
и с касательной к
в точке
. Гомотетия с
центром
и коэффициентом
переводит
в
, при этом точки пересечения прямой
с окружностью
переходят в
точки пересечения
с
в порядке их следования на луче
Значит, точка
перейдет в точку
, а точка
– в точку
При гомотетии касательная к в точке
переходит в касательную к
в точке
Согласно теореме о б угле между касательной
и хордой, касательные к
в точках
и
составляют равные углы с хордой
из чего следует, что прямая
составляет
равные углы с касательной к
в точке
и с касательной к
в
Утверждение доказано. (Отметим, что если касательные из
доказанного утверждения параллельны, то прямая
содержит
и
а значит точки
и
совпадают, что противоречит
условию.)
Осталось доказать Для этого рассмотрим прямую
являющуюся осью симметрии окружностей
и
относительно неё симметричны прямые
и
касательные к
в
и
Значит,
равен углу между
и
касательной к
в
этот угол равен
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!