Теорема Виета для многочленов
Ошибка.
Попробуйте повторить позже
Кубический многочлен имеет три корня. Наибольшее его значение на отрезке достигается при , а наименьшее при . Найдите сумму корней многочлена.
Источники:
Подсказка 1
Давайте в первую очередь обозначим наш многочлен в стандартном виде. И раз нам намекают про производную в условии, то найдём и её. Исходя из заданного условия, что мы можем сказать про нули производной?
Подсказка 2
Верно, числа 5 и 7 являются просто корнями квадратного трёхчлена, то есть нулями производной. Запишем это в виде разложения на множители. Давайте теперь вспомним, какая есть теорема, где мы знаем сумму корней многочлена через его коэффициенты?
Подсказка 3
Точно, это теорема Виета! Мы можем выразить через изначальные коэффициенты кубического многочлена сумму корней производной, а оттуда найти и нужную сумму корней.
Пусть многочлен имеет вид , откуда его производная .
Так как наименьшее и наибольшее значения достигаются во внутренних точках отрезка, то по необходимому условию экстремума производная в этих точках равна нулю, так что имеет корни и , так что можно записать
По теореме Виета сумма корней многочлена равна , а сумма корней многочлена равна , откуда находим .
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!