Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела многочлены
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#86093

Известно, что числа a,b,c,ab + ac + bc
     c   b   a  — целые. Обязательно ли являются целыми все три числа

abac bc
c , b ,a ?

Источники: Бельчонок - 2024, 11.2 (см. dovuz.sfu-kras.ru)

Подсказки к задаче

Подсказка 1

Давайте для доказательства этого воспользуемся неочевидным инструментом - симметрическими многочленами. Логика в том, что наши выражения точно рациональны, и при этом, мы знаем такой факт, что если некоторый многочлен с целыми коэффициентами имеет корень p/q (в несократимой записи), то старший коэффициент делится на q. Значит, в идеале, нам хотелось бы придумать многочлен, с целыми коэффициентами, корнями, равным нашим выражениям. Какое условие мы забыли, с учетом леммы выше?

Подсказка 2

Мы забыли условие на то, что у нас свободный член должен быть равен 1, если мы хотим целые корни нашему уравнению, ведь тогда знаменатель q = 1. Ну а какое самое простое уравнение с нашими выражениями в виде корней мы знаем? Верно, просто кубический многочлен с такими корнями. Остается проверить, что он имеет целый коэффициенты.

Подсказка 3

Коэффициенты нашего многочлена будут -(ab / c + bc / a + ca / b), (a^2 + b^2 + c^2), -abc. И да, эти коэффициенты целые, а также старший коэффициент равен 1, а значит, наши выражения — целые.

Показать ответ и решение

Рассмотрим числа ab,ac,bc
c  b a  . По условию их сумма целая, их произведение равно abc  — целое, сумма их попарных произведений равна  2  2   2
a + b +c  — целая. Значит, мы можем составить приведённый многочлен с целыми коэффициентами и корнями ab ac bc
-c ,-b ,a  :

          ab  ac  bc                         ab    bc    ac
P(x)=x3− (c-+ b-+ a)x2+ (a2+ b2+c2)x− abc= (x− c )(x− a)(x− b-)

Осталось заметить, что корни рациональны как отношения целых чисел. Если целочисленный многочлен имеет рациональный корень pq,(p,q)=1  , то его старший коэффициент делится на q  . Поскольку наш многочлен приведённый, корни являются целыми.

Ответ: да

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!