Тема . Тригонометрия

Метод вспомогательного аргумента (доп. угла)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#31390

Решите уравнение

√ -           7
  2sinx+ cosx = 4
Подсказки к задаче

Подсказка 1

Заметим, что в левой части равенства есть сумма синуса и косинуса с коэффициентами 1 и √2. Для того, чтобы воспользоваться методом вспомогательного угла, нам необходимо сделать эти коэффициенты равными синусу и косинусу некоторого угла. А это значит, что для них должно выполниться тригонометрическое тождество. Например, можно поделить все выражение на √3

Подсказка 2

Не пугаемся таких странных косинуса и синуса - можно использовать arcos(...) для удобства записи. Получим, что синус суммы равен какому-то числу. Время для оценки?

Показать ответ и решение

Поделим уравнение на √3  и применим к левой части метод вспомогательного угла:

           ∘-2    7
sin(x+ arccos(  3))= 4√3-

Нетрудно понять, что правая часть строго больше единицы, так как 49> 16⋅3  , а левая не превосходит единицы, значит, решений быть не может.

Ответ:

таких x  нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!