Метод вспомогательного аргумента (доп. угла)
Ошибка.
Попробуйте повторить позже
Решите уравнение
Подсказка 1
Заметим, что в левой части равенства есть сумма синуса и косинуса с коэффициентами 1 и √2. Для того, чтобы воспользоваться методом вспомогательного угла, нам необходимо сделать эти коэффициенты равными синусу и косинусу некоторого угла. А это значит, что для них должно выполниться тригонометрическое тождество. Например, можно поделить все выражение на √3
Подсказка 2
Не пугаемся таких странных косинуса и синуса - можно использовать arcos(...) для удобства записи. Получим, что синус суммы равен какому-то числу. Время для оценки?
Поделим уравнение на и применим к левой части метод вспомогательного угла:
Нетрудно понять, что правая часть строго больше единицы, так как , а левая не превосходит единицы, значит, решений быть не может.
таких нет
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!