Метод вспомогательного аргумента (доп. угла)
Ошибка.
Попробуйте повторить позже
Решите уравнение
Первое решение.
Преобразуем два первых слагаемых в левой части с помощью метода вспомогательного угла и оценим их:
А не превосходит
, значит, вся сумма слева не больше
. Следовательно, равенство возможно тогда и только тогда, когда
справедлива следующая система:
Со вторым уравнением работать не хочется, давайте решим сначала первое и третье. Первое уравнение системы имеет решения ,
третье —
, где
. Тогда получаем
. Но
делится на
, а на
не
делится, так что таких целых чисел
и
не существует. Значит, система, также как и исходное уравнение, не имеет
решений.
Второе решение.
По неравенству Коши-Буняковского
Отсюда можно получить оценку на левую часть уравнения:
Для того, чтобы достигалось равенство (исходя из уравнения), должно
1) Достигаться равенство в неравенстве Коши-Буняковского
2) Достигаться равенство в оценке на квадрат косинуса
3) Достигаться равенство в оценке на синус:
Из условий (2) и (3) получаем, что , а из первого:
. Отсюда приходим к
уравнению
которое противоречит условию (2).
таких нет
Специальные программы

Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!