Метод вспомогательного аргумента (доп. угла)
Ошибка.
Попробуйте повторить позже
Решите уравнение
Подсказка 1
Посмотрим на это уравнение. Первое, что как-будто бы нас смущает, это скобка с синусом и косинусом. Ее сразу хочется преобразовать. Это же, по сути, неоднородное тригонометрическое уравнение(если приравнять эту скобку к 1, к примеру, или к другой константе). А как мы привыкли их решать? Может здесь также получится?
Подсказка 2
Да, можно свернуть эту скобку(перед этим поделив все уравнение на 2=sqrt(1^2+sqrt^2(3)) ) в sin(x-pi/3). Произведение двух синусов равно 1, хмм… А что это дает? Что можно теперь сказать?
Подсказка 3
Если произведение синусов равно 1, так как каждый модуль каждого синуса не больше 1, то либо оба синуса равны 1, либо оба -1. Остаётся решить эту систему(желательно отмечая точки на круге по каждому уравнению, для наглядности) и получить ответ.
Поделим обе части на :
В силу ограниченности синуса имеем , то есть в итоге . Но так как , то в неравенствах на модуль синуса должны достигаться равенства, а это возможно лишь в двух случаях:
- и при этом . В пересечении получим вторую серию, ведь первая серия содержит вторую.
- и при этом . В пересечении получим вторую серию, ведь первая серия содержит вторую.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!