Тема . Тригонометрия

Метод вспомогательного аргумента (доп. угла)

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела тригонометрия
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#46083

Решите уравнение

√- (---sinx---     )   --cosx---
 3  sinx− cosx + tg2x = sinx+ cosx.
Подсказки к задаче

Подсказка 1

Распишите tg(2x) через sin(x) и cos(x). tg(a) = sin(a)/cos(a), начните с этого.

Подсказка 2

Учтите ОДЗ и домножьте левую и правую часть на sin(x)+cos(x). Все получится!

Показать ответ и решение

На ОДЗ (!) данное уравнение равносильно каждому из следующих:

√-(   sin x          2 sinxcosx      )      cosx
 3  sinx−-cosx-− (sin-x− cosx)(sinx-+cosx) = sinx+-cosx,
  √3-(sinx(sin x+cosx)− 2sinxcosx)= cosx(sinx − cosx),
        √-
         3sin x(sinx − cosx)=cosx(sinx− cosx).

На ОД3 sin x− cosx⁄= 0  , так что получаем уравнение

√-
 3sin x= cosx

√3-     1
2 sinx− 2cosx= 0

      π
sin(x− 6)= 0

x= π +πk,k∈ ℤ
   6

При этом заметим, что эти корни удовлетворяют условиям из ОДЗ, так что их можно писать в ответ.

Ответ:

 π + πk,k∈ ℤ
 6

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!