Тема . Применение классических комбинаторных методов к разным задачам

Двойной подсчёт

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела применение классических комбинаторных методов к разным задачам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#110624

В классе каждый ученик дружит ровно с шестью другими, и у любых двух учеников есть ровно два общих друга. Сколько учеников в этом классе?

Показать ответ и решение

Пусть A  — ученик, B ,...,B
 1     6  — его друзья, а X  — некоторый ученик, отличный от A.  По условию у X  должно быть ровно два друга среди B1,...,B6.  С другой стороны, у любых двух друзей Bi  и Bj  ученика A  есть единственный общий друг X,  отличный от A.  Поэтому учеников, отличных от A,  в классе столько же, сколько различных пар, составленных из друзей A,  то есть 6⋅5∕2= 15,  а всего учеников 15 +1= 16.

Ответ:

 16

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!