Тема . Применение классических комбинаторных методов к разным задачам

Чётность

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела применение классических комбинаторных методов к разным задачам
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#72747

Существуют ли целые числа x,y,z,  удовлетворяющие равенству:

(x+ y)(y+ z)(z+ x)=2023

Источники: Муницип - 2022, Брянская область, 8.1

Показать ответ и решение

Если бы такие три числа x,y и z  существовали, по крайней мере два из них имели бы одинаковую четность. Предположим, что это пара чисел x  и y  . Тогда сумма x+ y  четная, а значит, четным должно быть и произведение (x+ y)(y+ z)(z+ x).  Число же 2023,  которому это произведение должно равняться, — нечетное. Полученное противоречие показывает, что целых чисел, удовлетворяющих условию, не существует.

Варианты правильных ответов:
  1. нет
  2. Нет

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!