Оценка + пример
Ошибка.
Попробуйте повторить позже
На одной стороне каждой из 100 карточек написали одно из натуральных чисел от 1 до 100 включительно (каждое число записано ровно на одной карточке), после чего перевернули их обратными сторонами вверх и разложили в произвольном порядке на столе. За один вопрос Вася может указать на две любые карточки, после чего получает от ведущего ответ, являются ли записанные на них числа соседними (отличающимися на 1). За какое минимальное число вопросов Вася может гарантированно назвать хотя бы одну пару карточек, на которых написаны соседние числа?
Источники:
Подсказка 1
Поймём, что эта задача на оценку + пример! Чтобы придумать пример, подумайте о том, сколько соседей у каждого числа от 1 до 100.
Подсказка 2
Да, у каждого числа от 2 до 99 включительно — два соседа, а у чисел 1 и 100 — один сосед! Тогда можно увидеть алгоритм: задавать вопросы про одну и ту же карточку, постоянно меняю другую карточку. Какой ответ даёт этот алгоритм?
Подсказка 3
Верно, при таких действиях за 98 вопросов мы точно сможем назвать соседние числа! Осталось доказать, что за меньшее число вопросов доказать нельзя. Для этого нужно подумать о задаче в терминах теории графов. Тогда карточки — это вершины, а вопросы — это ребра! Что нужно найти в графе, чтобы доказать, что 98 — искомый ответ на задачу?
Подсказка 4
Да, надо найти Гамильтонов путь (такой путь, в котором каждая вершина встречается ровно один раз) по всем вершинам в графе, в котором ни одно ребро не является ребром, которое появилось вследствие вопроса Васи! Попробуйте посмотреть на задачу при малых n и доказать это утверждение по индукции!
Подсказка 5
База индукция тривиальна, поэтому давайте сразу подумаем о переходе! Такс, а что если посмотреть на вершину из которой выходит ровно одно ребро? А что будет в графе без неё? Можно ли в нём построить нужный нам путь?
Подсказка 6
Да. если есть такая вершина, то задача легко решается по индукции, ведь мы всегда можем переходить от случая с n вершинами к n+1 вершине с помощью добавления одного нужного нам ребра! Но вот незадача: что если нет вершин, из которых ихходит ровно одно ребро?
Подсказка 7
А если нет вершин с степенью 1, то можно точно утверждать, что есть хотя бы две вершины со степенью 0. Остаётся посмотреть на две этих вершин и еще одну вершину степень которой хотя бы 2!
Пример. Пусть Вася выберет какую-то карточку и задаст вопросов, в каждом из которых он спросит про и одну из карточек, отличных от Общее количество чисел, не соседних с числом, написанным на не превосходит если на написано или и если на написаны числа от до Тогда либо в одном из ответов будет дан положительный ответ, и Вася нашёл нужную пару соседних чисел, либо все эти карточки содержат числа, не соседние с числом на Следовательно, оставшаяся карточка содержит число, соседнее с числом на Таким образом, Васе достаточно вопросов.
Оценка. Докажем, что, если Вася задаст всего любых вопросов, он может не найти ни одной пары карточек с соседними числами. Предположим противное, что задав некоторые вопросов он смог точно указать на пару карточек с соседними числами. Переведём задачу на язык теории графов. Карточки будем считать вершинами графа а заданные Васей вопросы – рёбрами (синими рёбрами), соединяющими соответствующие пары карточек. К этим рёбрам нужно добавить ещё одно, соответствующее той паре карточек, на которых написана пара соседних, по версии Васи, чисел. Теперь нужно доказать, что вершины могут быть занумерованы в таком порядке, что ни одно ребро не соединяет две вершины с соседними номерами. То есть, нужно дорисовать в графе путь из рёбер, проходящий последовательно по всем вершинам, и не содержащих ни одного из «Васиного» синего ребра. Это будет означать, что Васина догадка не верна. Назовём такой путь красным и будем строить его методом математической индукции по числу вершин графа
Предположим, что в любом графе с числом вершин в котором проведено не больше синих рёбер, существует красный путь по всем вершинам, не содержащий синих рёбер. Построим красный путь в
1) Пусть в есть «крайняя» вершина из которой выходит ровно одно ребро В графе полученном из удалением вершины и ребра число вершин равно а рёбер – не больше выполнено предположение индукции, поэтому в можно построить красный путь длины с началом в вершине и концом в вершине Тогда ребро не соединяет вершину с одной из или проведя красное ребро из в эту вершину, получим красный путь длины в
2) Пусть в нет вершин, из которых выходит ровно одно ребро. В таком случае все синие рёбра инцидентны в сумме вершинам степени не меньше каждая, следовательно, среди них не больше различных. Следовательно, в не меньше двух вершин из которых не выходит ни одного синего ребра. Удалим из вершины и два ребра, выходящие из некоторой четвёртой вершины (но не саму вершину). Полученный граф снова удовлетворяет предположению индукции и в нём можно построить красный путь длины с началом в вершине и концом в вершине Если он не проходит через или проходит, но не проходит через удалённые рёбра, соединим с и с и получим красный путь в длины 99. В оставшихся случаях, обозначим за и вторые концы удалённых рёбер. Если красный путь в проходит через заменим этот фрагмент на Если он проходит только через одно удалённое ребро, скажем, через заменим его на В обоих случаях получится красный путь в
База индукции - случаи графов с 3 и 4 вершинами - очевидна.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!