Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#78851

На сторонах BC  и CD  квадрата ABCD  выбраны точки E  и F  таким образом, что угол EAF  равен 45∘.  Длина стороны квадрата равна 1. Найдите периметр треугольника CEF.

Источники: Межвед - 2021, 11.3 (см. v-olymp.ru)

Подсказки к задаче

Подсказка 1

Что нам вообще дали в задаче? Сторону квадрата и угол в 45 градусов. Скудный набор. Но при этом чуть-чуть про периметр нам известно, что это часть у двух сторон квадрата. Какая возможная есть гипотеза про вероятный периметр треугольника?

Подсказка 2

Ага, у нас треугольник расположен в углу и, если "развернуть" его гипотенузу, то периметр будет равен сумме двух сторон квадрата. Теперь это надо доказать. Попробуем сделать такую хитрую штуку. Что произойдёт, если точку D сначала отразить относительно AF, а потом относительно AE? Куда перейдёт точка D?

Подсказка 3

Верно, точка D перейдёт в точку B! Это будет так, потому что композиция двух осевых симметрий относительно пересекающихся прямых — это поворот на удвоенный угол между прямыми. Получается, что у нас точки B и D при отражении относительно сторон являются одной точкой X на EF. Но чем на самом деле является точка X в треугольнике AEF?

Подсказка 4

Да, это основание высоты из точки A. Это вытекает из свойств симметрии. Осталось только аналогично понять равенство отрезков, и мы добились своей цели. Победа!

Показать ответ и решение

Первое решение.

Вспомним, что угол, под которым видна сторона треугольника из центра вневписанной окружности, равен   ∘  α
90 − 2,  где α  — угол, в который окружность вневписана.

Центр вневписанной окружности треугольника CEF  лежит на прямой AC,  т.к. биссектриса совпадает с диагональю квадрата AC.  Но при этом

                ∠ECF
∠EAF = 45∘ = 90∘−--2--,

то есть точка A  как раз является центром вневписанной окружности треугольника CEF.

PIC

Тогда точки B  и D  — точки касания вневписанной окружности с продолжениями сторон треугольника CEF,  а его периметр равен BC + CD = 1+1 =2.

Второе решение.

Если отразить точку D  относительно прямой AF,  а затем относительно прямой AE,  то она перейдет в точку B.  Действительно композиция двух осевых симметрий относительно пересекающихся прямых — это поворот на удвоенный угол между прямыми. То есть в нашем случае эти две симметрии эквивалентны повороту на угол 90∘ относительно точки A.  Это означает, что образ точки D  при симметрии относительно AF  и образ точки B  при симметрии относительно AE  — это одна и та же точка; на рисунке она обозначена K.

PIC

Из точки K  отрезки AE  и AF  видны под углом 90∘ (при симметрии сохраняются величины углов, поэтому например, углы ABE  и AKE  равны). Значит, точка K  — это основание перпендикуляра, опущенного из точки A  на прямую EF.  И, наконец, поскольку BE = EK  и DF = FK  (при симметрии длины отрезков сохраняются), видим, что периметр треугольника CEF  равен сумме длин сторон BC  и CD  квадрата.

Ответ:

 2

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!