Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#79609

Дан треугольник ABC  , в который вписана окружность с центром O  . Пусть M  и N  — точки касания вписанной окружности со сторонами AB  и AC  . Известно, что AO = 2⋅MN.  Найдите ∠A.

Источники: БИБН - 2024, 11.1 (см. www.unn.ru)

Подсказки к задаче

Подсказка 1

У нас имеется отношение AO/MN=2. Мы все прекрасно помним, что отношение длин отрезков на окружности легко переносится на отношение синусов уголочков. Почему бы нам тогда не найти окружность, у которой есть хорды AO и MN...

Подсказка 2

Она легко находится- это окружность, построенная на AO как на диаметре. Тогда мы можем написать расширенную теорему синусов: MN/sin∠A=2R=AO. Тогда мы получаем, что sin∠A=MN/AO=1/2. Не забудьте, что синусы смежных уголков равны и найдите уголочек!

Показать ответ и решение

Пусть ∠A = 2α.  Обозначим через точку K  пересечение MN  и AO  . Тогда, если радиус окружности равен r  , то из прямоугольного треугольника MKO

1                 ∘
2MN = MK  =r⋅sin(90 − α)= r⋅cosα

PIC

Выразим AO  из прямоугольного треугольника AMO

AO = -r--
     sinα

Подставляя в AO = 2⋅MN  , получаем

         -r--
4r⋅cosα= sinα

      1
sin2α= 2

      ∘     ∘
2α = 150 или 30 как угол треугольника.

Ответ:

 150∘ или 30∘

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!