Вписанная и вневписанная окружности
Ошибка.
Попробуйте повторить позже
Дан треугольник , в который вписана окружность с центром . Пусть и — точки касания вписанной окружности со сторонами и . Известно, что Найдите
Источники:
Подсказка 1
У нас имеется отношение AO/MN=2. Мы все прекрасно помним, что отношение длин отрезков на окружности легко переносится на отношение синусов уголочков. Почему бы нам тогда не найти окружность, у которой есть хорды AO и MN...
Подсказка 2
Она легко находится- это окружность, построенная на AO как на диаметре. Тогда мы можем написать расширенную теорему синусов: MN/sin∠A=2R=AO. Тогда мы получаем, что sin∠A=MN/AO=1/2. Не забудьте, что синусы смежных уголков равны и найдите уголочек!
Пусть Обозначим через точку пересечение и . Тогда, если радиус окружности равен , то из прямоугольного треугольника
Выразим из прямоугольного треугольника
Подставляя в , получаем
как угол треугольника.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!