Вписанная и вневписанная окружности
Ошибка.
Попробуйте повторить позже
Вписанная окружность треугольника с центром в точке касается сторон соответственно в точках . Точки и симметричны вершине относительно прямых и соответственно. Окружности, построенные на отрезках и как на диаметрах, вторично пересекаются в точке . Докажите, что лежит на прямой .
Источники:
Подсказка 1
Хочется с самого начала понять, что за точка K нам дана. Заметим, что одна сторона у наших треугольников одинаковая на будущее. К тому же из условия вытекает, что какие-то углы прямые. Тогда чем же является точка K на нашей картинке?
Подсказка 2
Верно, точка K лежит на отрезке FE и является серединой, так как FIE равнобедренный. Теперь когда объекты на картинке так или иначе связаны, то можно вернуться к вопросу задачи. Что если посмотреть на четырёхугольник NFME. Чем в нём является K? Если же K будет лежать на NM, то что должно выполняться?
Подсказка 3
Верно, K середина диагонали и, если NFME будет параллелограммом, то K как раз будет лежать на NM. Осталось доказать это. Причём мы знаем, что NF =AF = AE = EM, как отрезки касательных из одной точки и симметрии. Остаётся только ввести стандартно углы треугольника, посчитать немного, и победа!
Проведем . Так как окружности построены на диаметрах,
Следовательно, точка — середина отрезка , так как и — высота равнобедренного треугольника
Проведем и . как отрезки касательных, и в силу симметрии получаем
Обозначим углы
Тогда . И . Следовательно, , и тогда
Аналогичным счетом углов показываем, что и
Следовательно, — параллелограмм. В нем — середина диагонали . Диагонали параллелограмма точкой пересечения делятся пополам, поэтому — середина
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!