Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела окружности
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#76419

В неравнобедренном треугольнике ABC  провели высоту BH,  медиану BM  и биссектрису BL.  Точки P  и Q  — ортогональные проекции вершин A  и C  на прямую BL.  Докажите, что точки M, H,P  и Q  лежат на одной окружности.

Источники: КФУ-2022, 11.4 (см. kpfu.ru)

Подсказки к задаче

Подсказка 1

Давайте для начала попробуем продлить биссектрису до пересечения с описанной окружностью ABC в точке X. Что теперь можно вспомнить про эту точку?

Подсказка 2

Верно, эта точка делит дугу AC пополам. Тогда XM будет серединным перпендикуляром. Теперь у нас на картинке много прямых углов. Тогда про какие четырёхугольники мы можем пронаблюдать что-то хорошее?

Подсказка 3

Да, у нас получаются два вписанных четырёхугольника AMQX и CBPH, потому что прямые углы опираются на одну дугу. Но теперь вспомните, что внутренний угол равен противоположному внешнему, и попробуйте перекинуть уголки. Осталось только воспользоваться второй подсказкой, и победа!

Показать доказательство

Рассмотрим без ограничения общности AB < BC.  Тогда точка P  лежит внутри треугольника ABC  , а точка Q  вне его.

Первое решение.

Построим описанную окружность треугольника ABC  , тогда продолжение биссектрисы BL  пересечет ее в точке D  , являющейся серединой дуги AC  . Тогда AD = CD  , то есть медиана DM  равнобедренного треугольника ADC  будет также и высотой.

PIC

Так как ∠AMD  = ∠AQD = 90∘ , то получим, что ∠CAD = ∠MQL  . Так как ∠BPC = ∠BHC = 90∘ аналогично получаем, что ∠P HL =∠CBD  .

Но углы ∠CBD  = ∠CAD  равны, как вписанные углы, опирающиеся на одну дугу.

В итоге ∠PHL = ∠CBD = ∠CAD = ∠MQL  . Но из равенства углов ∠P HL =∠MQL  следует, что точки M,H,P,Q  лежат на одной окружности.

Второе решение.

Обозначим через A′ и C′ точки пересечения прямых AP  и BC,CQ  и AB  соответственно.

PIC

Поскольку BP  — биссектриса и         ′       ′
BP ⊥ AA ,BQ ⊥ CC ,  треугольники     ′
BAA и    ′
BCC — равнобедренные, и значит,        ′
AP = PA и        ′
CQ = QC .

В треугольнике   ′
AA C  точки P  и M  — середины сторон    ′
AA и AC,  поэтому P M  — средняя линия, и значит, PM ∥BC.  Аналогично,       ′
MQ ∥BC .  Следовательно, ∠AMQ  = ∠BAC.  Возможны два случая:

a) ∠BAC  ≤90∘.  Точки A,H,P  и B  лежат на одной окружности с диаметром AB,  поэтому четырёхугольник AHP B  — вписанный. Значит,

∠HP Q = 180∘− ∠HP B = ∠BAC = ∠HMQ

Следовательно, точки H, P,M  и Q  лежат на одной окружности.

б)         ∘
∠BAC > 90 ,  тогда точки A,H,B  и P  лежат на одной окружности с диаметром AB,  поэтому четырёхугольник AHBP  — вписанный. Значит,

∠HP Q =180∘− ∠HPB = 180∘− ∠HAB  =∠BAC  =∠HMQ

Следовательно, точки H, P,M  и Q  лежат на одной окружности.

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!