Лемма о трезубце
Ошибка.
Попробуйте повторить позже
В неравнобедренном треугольнике проведена биссектриса Точка — центр вписанной окружности треугольника Серединный перпендикуляр к отрезку пересекает окружность, описанную около треугольника в точках и Точка на отрезке выбрана так, что Докажите, что точки и лежат на одной окружности.
Подсказка 1
У нас есть треугольник AIC и его описанная окружность. Может, мы знаем что-то хорошее про ее центр?
Подсказка 2
По лемме о трезубце, это середина дуги AC! Обозначим ее за O. Кроме того, он лежит на отрезке ED, т.к. это серединный перпендикуляр к AC. Как можно теперь связать точки E и D так, чтобы можно было что-то сделать с точкой F похожим образом?
Подсказка 3
Например, можно сказать, что E и D симметричны относительно прямой, перпендикулярной ED и проходящей через O) Давайте также отразим F относительно этой прямой, и получим точку F'. Что мы получили?
Подсказка 4
Мы получили, что есть DEFF' - вписанная равнобокая трапеция. Мы хотим доказать, что E, D, B, F на одной окружности, а уже есть DEFF'..Как можно переформулировать теперь задачу?
Подсказка 5
Можно теперь доказывать, что точки F', D, B и E лежат на одной окружности) Для этого попробуйте доказать, что O - центр окружности B₁FF'! Это можно сделать с помощью симметрии, чтобы доказать, что O лежит на B₁F') А дальше как действовать?
Подсказка 6
А дальше можно воспользоваться подобием треугольников OAB и OAB₁ и записать отношения сторон) После с помощью предыдущей подсказки можно по-другому выразить это равенство отношений, и получится требуемое условие для того, чтобы F', D, B и E лежали на одной окружности)
Обозначим через середину дуги описанной окружности треугольника , не содержащей точку . Тогда лежит на прямой . Кроме того, по лемме о трезубце точка равноудалена от точек и , поэтому является центром описанной окружности треугольника и лежит на отрезке . Пусть точка симметрична точке относительно серединного перпендикуляра к . Очевидно, — равнобедренная трапеция, значит, лежат на одной окружности.
Докажем, что точка лежит на этой же окружности. Заметим, что точка лежит на , поскольку равноудалена от точек и , т.е. — диаметр окружности с центром и радиусом . Из подобия треугольников и следует, что , что равносильно равенству
Из последнего равенства следует, что точки лежат на одной окружности.
Специальные программы
Программа
лояльности v2.0
Приглашай друзей в Школково и получай вознаграждение до 10%!
Крути рулетку
и выигрывай призы!
Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.
Бесплатное онлайн-обучение
Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.
Налоговые вычеты
Узнай, как получить налоговый вычет при оплате обучения в «Школково».
Специальное предложение
для учителей
Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!
Вернём деньги за курс
за твою сотку на ЕГЭ
Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!