Тема . Векторы и координаты в планиметрии

Длины векторов и скалярное произведение

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела векторы и координаты в планиметрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#47137

Пусть L  — точка пересечения диагоналей CE  и DF  правильного шестиугольника ABCDEF  со стороной 3.  Точка K  такова, что −−→    −→  −→
LK = 3AB −AC.  Определите, лежит ли точка K  внутри, на границе или вне ABCDEF,  а также найдите длину отрезка KC.

Источники: ОММО-2017, номер 4, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Заметим несколько фактов: в правильном шестиугольнике CE перпендикулярно FE и AB при проекции на EF или CB равняется EF/2. Попробуйте использовать эти два факта!

Подсказка 2

Пусть К' - точка пересечения AB и CE. Теперь мы можем использовать вектор CK' для выражения, попробуем найти равный ему вектор!

Подсказка 3!

Верно, это LK! Осталось правильно применить все полученные на рисунке векторы!

Показать ответ и решение

PIC

Как известно, CE ⊥ FE,  а также проекция AB  на прямую FE  равна FE2 .  Поэтому если продлить AB  в три раза до точки K′,  то K ′ ∈CE  (удвоенная проекция AB  равна F E  ). Отсюда легко видеть, что −A→C + −C−K→′ =3−A→B,  то есть −C−K→′ = −−L→K.  По свойствам правильного шестиугольника

CE = √3AB = AB tg60∘ = BC tg ∠K′BC =CK ′

В итоге CE =LK = CK ′ =⇒   LE = CK = FE⋅tg∠DF E = √3.

Ответ:

Вне, √3

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!