Тема . Векторы и координаты в планиметрии

Длины векторов и скалярное произведение

Вспоминай формулы по каждой теме
Решай новые задачи каждый день
Вдумчиво разбирай решения
ШКОЛКОВО.
Готовиться с нами - ЛЕГКО!
Подтемы раздела векторы и координаты в планиметрии
Решаем задачу:

Ошибка.
Попробуйте повторить позже

Задача 1#47911

В треугольнике ABC  с отношением сторон AB :AC =5 :4  биссектриса угла BAC  пересекает сторону BC  в точке L.  Найдите длину отрезка AL,  если длина вектора   −→    −→
4⋅AB +5⋅AC  равна 2016.

Источники: ОММО-2016, номер 4, (см. olympiads.mccme.ru)

Подсказки к задаче

Подсказка 1

Давайте пробовать постепенно раскручивать задачу, пользуясь всеми условиями. Нам дана биссектриса треугольника. Какие тогда соотношения можно записать?

Подсказка 2

Верно, можно записать равенство отношений отрезков и сторон, тем более одно из них нам дано. Так же нам дали какую-то странную сумму векторов... Давайте тогда попробуем выразить AL через вектора, может эта сумма там и появится. Как это можно сделать?

Подсказка 3

Ага, можно для начала выразить AL через сумму двух векторов по правилу треугольника. Видим, что фигурируют неизвестные нам вектора, и в данной по условию сумме они не участвуют. Тогда попробуем заменить один из векторов по полученному равенству в 1 подсказке, а далее ещё раз воспользоваться правилом треугольника.

Показать ответ и решение

PIC

Поскольку по свойству биссектрисы BLLC-= AABC-= 54,  то −→    −−→
BL= 59BC,  тогда

                                (       )
−A→L = −A→B +−B→L = −A→B + 5⋅−−B→C = −→AB+ 5  −A→C − −A→B =
                   9          9

= 4 ⋅−A→B + 5 ⋅−A→C = 1 (4−→AB+ 5−−B→C)
  9      9      9

Отсюда −→   1
|AL |= 9 ⋅2016= 224.

Ответ:

 224

Специальные программы

Все специальные программы

Программа
лояльности v2.0

Приглашай друзей в Школково и получай вознаграждение до 10%!

Крути рулетку
и выигрывай призы!

Крути рулетку и покупай курсы со скидкой, которая привязывается к вашему аккаунту.

Бесплатное онлайн-обучение

Для школьников из приграничных территорий России, проживающих в ДНР, ЛНР, Херсонской, Запорожской, Белгородской, Курской, Брянской областях и Крыму.

Налоговые вычеты

Узнай, как получить налоговый вычет при оплате обучения в «Школково».

Специальное предложение
для учителей

Бесплатный доступ к любому курсу подготовки к ЕГЭ, ОГЭ и олимпиадам от «Школково». Мы с вами делаем общее и важное дело, а потому для нас очень значимо быть чем-то полезными для учителей по всей России!

Вернём деньги за курс
за твою сотку на ЕГЭ

Сдать экзамен на сотку и получить обратно деньги за подготовку теперь вполне реально!

cyberpunkMouse
cyberpunkMouse
Рулетка
Вы можете получить скидку в рулетке!